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Abstract. We study a recent criterion for the injectivity of a holomor-
phic curve in Ψ : D → Cn, the strong form of which is shown to imply
that the image in Cn is a uniform surface. This concept is borrowed
from geometric function theory in connection with quasidisks. We also
obtain a two-point distortion theorem giving sharp estimates for the
separation of images in terms of the hyperbolic distance in D.

1. Introduction

In recent years, several injectivity criteria have been established for the
conformal immersion of the unit disk D ⊂ C into higher dimensional eu-
clidean spaces. Important instances are represented by the Weierstrass-
Enneper lift of a harmonic mapping and by a holomorphic curve in Cn

parametrized by D [3], [4]. The criteria involve bounds on the Gaussian cur-
vature of the image surface and on a Schwarzian derivative of the immersion
stemming from conformal differential geometry. They constitute generaliza-
tions of classical conditions of Nehari in geometric function theory [10], with
results that go beyond injectivity. In particular, the immersions are shown
to admit a continuous extension to the closed disk with an analysis of the
cases when such an extension can fail to be injective on the boundary. We
cite [12] for a seminal paper analyzing the issues of continuous extension
and extremal mappings for one of Nehari’s condition.

In one way or another, all classical Schwarzian univalence criteria en-
tail establishing the disconjugacy of solutions of an associated second order
linear differential equation. The higher dimensional analogues do as well,
but through an allied one-dimensional Schwarzian operator introduced by
Ahlfors in his study of the distortion of cross-ratio and curves in euclidean
spaces [1]. Of independent interest we mention sharp criteria for curves to
be simple or even unknotted that can be derived in terms of this operator
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[7]. The appearance of the Gaussian curvature in the high dimensional cri-
teria can be explained as the difference between the conformal Schwarzian
of the immersion along a curve in the domain, and Ahlfors’ derivative of the
restriction of the immersion to that curve. We refer to [13] for a formula-
tion of a derivative that encompasses both Ahlfors operator as well as the
conformal Schwarzian, giving thus a unified approach to the various criteria
here described.

An important phenomenon in classical theory is the connection between
univalence criteria and quasiconformal mappings (see, e.g., [2]). As a general
rule, the strong form of a univalence condition in D (or any quasidisk) ensures
that the mappings f considered admit a quasiconformal extension to the
plane [12]. Equivalently, the image f(D) is a quasidisk, a property that can
be formulated entirely in terms of metric conditions of f(D). Furthermore,
this characterization can be translated to a property of the boundary ∂f(D)
by the well-known four-point condition of Ahlfors. In higher dimensions
there are no known characteristic properties for a topological ball to be
the image of a ball under a quasiconformal mapping of the entire space.
Some results in this direction can be found in [14], [6], where the strong

form of the criterion for the injectivity of Weierstrass-Enneper lifts f̃ is
studied. Specifically, in [14] the author shows that the images f̃(D) on
the minimal surface, when bounded, are linearly-connected, John domains
relative to the surface metric. In two dimensions, this would be equivalent
to the image of the disk being a bounded quasidisk. In [6], the authors
obtain a quasiconformal extension to 3-space of the Weierstrass-Ennerper lift
under the same Schwarzian bound considered in [14]. Thus, the “quasidisk”

f̃(D) in [14] is a “hemisphere” of the quasisphere f̃(C ∪ {∞}) that bounds
the quasiball f̃((R3)+) in space. A connection between the 3-dimensional
quasiconformal geometry of a quasi-ball and the 2-dimensional geometry of
its boundary is unknown to us.

The purpose of the present paper is to extend the results in [14] for
the strong form of the injectivity criterion for holomorphic curves in Cn

parametrized by D. For this purpose we introduce the notion of a uniform
surface in complete analogy to the notion of a uniform domain that char-
acterizes a planar quasidisk. The techniques developed here apply as well
to the case treated in [14]. An improvement is that our results are valid
regardless of the boundedness of the image. In addition, we establish sharp
theorems for the separation of images in terms of the hyperbolic distance in
D.

The paper is organized as follows. In Section 2 we give a brief account
of the standard and the conformal Schwarzian derivative, and a classical
criterion of Nehari with its formulation for the case of a holomorphic curve.
We present here the notion of a uniform surface, with the statements of our
main results. Proofs are deferred to the last section. Sections 3 and 4 are
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devoted to Ahlfors operator and to important lemmas regarding the metric
on the image surface in Cn.

2. Preliminaries and Main Results

We recall the definition of Schwarzian derivative of an analytic and locally
univalent function f given by

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

Nehari [10] proved that a function f analytic and locally univalent in D :=
{z : |z| < 1} is univalent if

(1) |Sf (z)| ≤ 2p(|z|),

where p : (−1, 1) → R+ satisfies the conditions

(i) p is a continuous and even function;
(ii) (1− t2)2p(t) is decreasing in (0, 1);
(iii) the differential equation u′′+pu = 0 has no nontrivial solutions with

more than one zero in (−1, 1).

A function p satisfying the conditions above will be called a Nehari p-
function. An important special case constitutes the Nehari class N of func-
tions satisfying the above criterion for p(t) = (1 − t2)−2. This class has
been the subject of several investigations in connection with quasiconformal
mappings (see e.g., [2], [12]). In [9] the authros derive other geometric and
analytic properties of functions in the class N and showed, in particular,
that

(2)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤ 2µ
|z|

1− |z|2
, 0 < µ ≤ 1

for functions f satisfying(1) with p(t) = µ(1 − t2)−2 and f ′′(0) = 0. In
Lemma 1 below we generalize (2) to a corresponding class of holomorphic
curves.

A holomorphic curve is a smooth function Ψ defined from a domain Ω ⊂ C
into Cn, n ≥ 1, such that

Ψ′(z) := lim
h→0

Ψ(z + h)−Ψ(z)

h
, h ∈ C

exists for all z ∈ Ω. It follows that if Ψ is a holomorphic curve and Ψ =
(ψ1, . . . , ψn), then ψk : Ω → C is analytic for all k = 1, . . . , n. We are
interested in the case Ψ′(z) ̸= 0 for all z ∈ D. Under this assumption Ψ is a
locally injective holomorphic curve. We regard Σ = Ψ(D) as a 2-dimensional
surface in Cn ∼= R2n. The mapping Ψ represents a conformal parametrization
of Σ with first fundamental form λ(z)|dz| given by

λ2 = λ2Ψ = ∥Ψ′∥2 =
∣∣ψ′

1

∣∣2 + · · ·+
∣∣ψ′

n

∣∣2 .
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The Gaussian curvature at a point Ψ(z) on Σ is given by

(3) K(z) = − 1

λ2(z)
∆ log λ(z).

Note that if f is a locally injective holomorphic function, then Ψ ◦ f is a
holomorphic curve which satisfies (Ψ ◦ f)′(z) ̸= 0 for all z and

(4) λΨ◦f = (λΨ ◦ f)|f ′|.

The Schwarzian derivative of Ψ : D → Cn is defined in [4] by

SΨ = 2(∂zz(log λ)− (∂z log λ)
2).

This reduces to the classical Schwarzian when n = 1. A straightforward
calculation shows that

S(Ψ ◦ f) = (SΨ ◦ f)(f ′)2 + Sf ,

where f is a locally injective holomorphic function. In particular, if T is a
conformal automorphism of D, we obtain

(5) S(Ψ ◦ T ) = (SΨ ◦ T )(T ′)2.

In [4] the authors prove the following criterion of univalence:

Theorem 1. Let p be a Nehari function and Ψ : D → Cn a holomorphic
curve such that Ψ′(z) ̸= 0 for all z ∈ D. If

(6) |SΨ(z)|+ 3

4
λ2(z)|K(z)| ≤ 2p(|z|), z ∈ D,

then Ψ is injective and has a spherically continuous extension to the closure
of D. If we have strict inequality in (6) in a ring of the form {z : r0 ≤ |z| < 1},
then the extension is injective in D.

We will denote by Nhµ the family of holomorphic curves satisfying

|SΨ(z)|+ 3

4
λ2(z)|K(z)| ≤ 2µ

(1− |z|2)2
, 0 < µ ≤ 1.

We will write Nh instead of Nh1. It is easy to see that if T ∈ Aut(D)
and Ψ ∈ Nhµ, then Ψ ◦ T ∈ Nhµ. Also, Nhµ0 will denote the family of
holomorphic curves Ψ ∈ Nhµ with ∂zλ(0) = 0.

In this paper we will consider the following definition of uniform domain
in analogy to the definition found in [11] for planar domains:

Definition 1. A surface S ⊂ Rn is said to be an uniform surface if there
exist constants a and b such that each pair of points x1, x2 ∈ S can be joined
by a rectifiable arc γ ⊂ S for which

(i) l (γ) ≤ a∥x1 − x2∥;
(ii) min

j=1,2
l (γ (xj , x)) ≤ bd (x, ∂S) for all x ∈ γ.
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Here l (γ) denotes the Euclidean length of γ, γ (xj , x) the part of γ between
xj and x, and d(x, ∂S) stands for the extended real number

d(x, ∂S) := sup{ r ≥ 0 : BS(x, r) ⊂ S },

where BS(x, r) is the ball in S centered at x with radius r.
The main purpose of this paper is to establish sufficient conditions for

image of the unit disk under a holomorphic curve Ψ to be a uniform sur-
face. We will also obtain a two-point distortion theorem associated with a
holomorphic curve.

Further background is discussed in Section 3. Below, we summarize our
main results.

Theorem 2. Suppose Ψ ∈ Nhµ and 0 < µ < 1. Then Ψ(D) is an uniform
surface.

Theorem 3. Let Ψ ∈ Nhµ and 0 < µ < 1. Then

(7) ∥Ψ(z1)−Ψ(z2)∥ ≥
√

(1− |z1|2)λ(z1)(1− |z2|2)λ(z2) dh(z1, z2)

for all z1, z2 ∈ D. Moreover, if Ψ ∈ Nhµ0 and λ(0) = 1, then

(8) ∥Ψ(z1)−Ψ(z2)∥ ≤ 4π√
1− µ

|z1 − z2|
√
1−µ

for all z1, z2 ∈ D.

A distortion theorem of type (8) for the family Nh was proven in [4].
The inequality (8) is an extension to holomorphic curves of a result for
holomorphic functions obtained in [8]. The inequality (7) generalizes the
result obtained in [5] for an analogous class of harmonic mappings, and our
proof is based on the one given in [5] for the case p(t) = µ(1− t2)−2.

3. The Schwarzian derivative of Ahlfors

Ahlfors [1] defined the Schwarzian derivative of a regular curve φ : (a, b) →
Rn of class C3, also called Ahlfors’ Schwarzian, by

S1φ =
⟨φ′, φ′′′⟩
∥φ′∥2

− 3
⟨φ′, φ′′⟩2

∥φ′∥4
+

3

2

∥φ′′∥2

∥φ′∥2
,

where ⟨·, ·⟩ denotes the Euclidean inner product in Rn. Ahlfors’ Schwarzian
is invariant under post-composition with a Möbius transformation of Rn and
satisfies a chain rule. More precisely, if x : (c, d) → (a, b) is of class C3 with
x′(t) ̸= 0 for all t ∈ (c, d), then

S1(φ ◦ x)(t) = S1φ(x(t))x
′ (t)2 + S1x(t),

where

Sx := S1x =

(
x′′

x′

)′
− 1

2

(
x′′

x′

)2

.
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Chuaqui and Gevirtz [7] obtained an important expression for S1 in terms
of geometric quantities of the trace, namely

(9) S1φ =

(
v′

v

)′
− 1

2

(
v′

v

)2

+
1

2
v2k2 = Ss+

1

2
v2k2,

where v is the velocity of φ, k its curvature, and s its arc length. In [7] the
authors proved the following injectivity criterion for curves in Rn.

Theorem 4. Let P be a continuous function on (−1, 1) such that no non-
trivial solution u of the differential equation u′′ + Pu = 0 has more that
one zero. Let φ : (−1, 1) → Rn ∪ {∞} be a regular curve of class C3. If
S1φ(x) ≤ 2P (x) on (−1, 1), then φ is injective.

4. Growth and distortion results for the metric

The first result of this section generalizes (2) to the subclass of holomor-
phic curves Ψ which satisfy (6) and ∂zλ(0) = 0.

Lemma 1. Let p be a Nehari’s function and Ψ : D → Cn a holomorphic
curve such that Ψ′(z) ̸= 0 for all z ∈ D. Suppose that Ψ satisfies (6) and
∂zλ(0) = 0. Then

(10)

∣∣∣∣∂ log λ∂z
(z)

∣∣∣∣ ≤ w (|z|)

for all z ∈ D, where w is the solution of the initial value problem

(11)

{
w′ (t) = w2 (t) + p (t) ,
w (0) = 0,

with 0 ≤ t < 1.

Proof. Since the quantities involved in (10) are invariant under rotations, it
suffices to show (10) in the case 0 ≤ z < 1. On the other hand, if y(t) =
∂z log λ(t), it follows that

y′ =

{
1

2

⟨Ψ′′′,Ψ′⟩
λ2

− 1

2

⟨Ψ′′,Ψ′⟩2

λ4

}
+

{
1

2

|Ψ′′|2

λ2
− 1

2

⟨Ψ′′,Ψ′⟩⟨Ψ′,Ψ′′⟩
λ4

}
= (log λ)zz + (log λ)zz̄.

From here, and from the definition of SΨ, we obtain that

y′ =
1

2
SΨ+ y2 + (log λ)zz̄,

or equivalently, by (3)

(12) y′ = y2 +

(
1

2
SΨ− 1

4
λ2K

)
.

Hence, by (6) and (12), we conclude that φ(t) = | y(t)| satisfies

(13)

{
φ′ (t) ≤ φ(t)2 + p (t) ,
φ (0) = 0.



UNIFORM DOMAINS ON HOLOMORPHIC CURVES 7

Comparing (13) with (11) we have{
(φ− w)′ (t) ≤ (φ− w) (φ+ w) (t),
(φ− w) (0) = 0,

which implies that, for 0 ≤ t < 1,

[e−
∫ t
0 (φ+w)ds(φ− w)]′ = e−

∫ t
0 (φ+w)ds[(φ− w)′ − (φ− w)(φ+ w)] ≤ 0.

Hence, as φ(0) = w(0), we can get e−
∫
(φ+w)dt(φ − w) ≤ 0 and so, |y (t)| =

φ (t) ≤ w (t) , for all 0 ≤ t < 1. �

Remark 1. In particular, for the Nehari’s functions p (t) =
(
1− t2

)−2
,

p (t) = 2
(
1− t2

)−1
, and p (t) = π2/4 we have w (t) = t/1 − t2, w (t) =

2t/1− t2, and w (t) = π
2 tan

(
πt
2

)
, respectively. Also, if p (t) = µ

(
1− t2

)−2
,

0 < µ < 1, then

(14) w(t) =
t

1− t2
− 2α2

1− t2
Aµ(t),

where α =
√
1− µ and Aµ is given by

Aµ(z) =
1

α

(1 + z)α − (1− z)α

(1 + z)α + (1− z)α
.

Moreover, a straightforward calculation shows that Aµ is convex in [0, 1], so

ψ(t) =
Aµ(t)

t is increasing here. Thus,

1− α2Aµ(t)

t
≤ 1− α2A′

µ(0) = 1− α2 = µ.

From this, (14) and the inequality (10) it follows that if Ψ ∈ Nhµ0 , 0 < µ ≤ 1,

(15)

∣∣∣∣∂ log λ∂z
(z)

∣∣∣∣ ≤ µ|z|
1− |z|2

for all z ∈ D.

We illustrate Lemma 1 by using Example 2 in [4]:

Example. We consider the Nehari’s functions p1(z) =
(
1− z2

)−2
and

p2(z) = 2
(
1− z2

)−1
. The analytic and univalent functions Φ1 and Φ2 in D

given by

Φ1 (z) =
1

2
log

1 + z

1− z
and Φ2 (z) =

1

4
log

1 + z

1− z
+

1

2

z

1− z2

satisfy SΦj (z) = 2pj (z) , j = 1, 2. The image Φj(D) is a parallel strip
like domain, symmetric with respect to the real and imaginary axes, and
containing the entire real line. Let

ψj (z) =
cΦj (z) + i

cΦj (z)− i
, j = 1, 2
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where c > 0 is to be chosen sufficiently small so that i/c /∈ Φj(D). The
functions ψj maps D onto a simply-connected domain containing the unit
circle minus the point 1. Define Ψ : D → C2 by

Ψj (z) =

(
ψj ,

1

ψj

)
, j = 1, 2.

A straightforward calculation shows that if λj := ∥Ψ′
j∥ then ∂zλj (0) = 0.

Furthermore, according to Example 2 in [4] Ψj satisfies (6), namely Ψj

verifies the hypotheses of Lemma 1.

We say that a function u : [0, 1) → R+ is eventually increasing if there is
x0 ∈ [0, 1) such that u (t) is increasing in x0 ≤ t < 1.

Lemma 2. Let Ψ ∈ Nh and suppose Ψ bounded. Then

(16) uΨ (z) :=
1√(

1− |z|2
)
λ (z)

has a critical point in D.

Proof. Since Ψ is bounded we have that
∫ 1
−1 λ (t) dt < ∞. Let h (t) =∫ t

0 λ (τ) dτ be the arc length function. It follows from Lemma 2 in [4] that

(17) Sh (t) ≤ S1Ψ(t) ≤ |SΨ(t)|+ 3

4
λ2 (t) |K (t)| ≤ 2

(1− t2)2
,

for t ∈ (0, 1). We define the function

x(s) =
e2s − 1

e2s + 1
, −∞ < s <∞,

which is bijective and increasing from R onto (−1, 1) with inverse s(x) =
1
2 log

1+x
1−x . Note that v = (w ◦ x) /

√
x′ where w = 1/

√
h′ , which is a solution

of

(18) w′′ +
1

2
(Sh)w = 0.

From (18) and the equality x′ = 1−x2, straightforward calculations produce

v′′ (s) =

(
1−

(
1− x2 (s)

)2 1
2
Sh (x (s))

)
v (s) .

It follows from (17) that the expression in parenthesis is non negative, so v
is convex. We claim that uΨ has an absolute minimum. Indeed, since the
integral ∫ 1

0
h′(t)dt =

∫ ∞

0
h′(x(s))x′(s)ds =

∫ ∞

0

ds

v2(s)

is finite then the convexity of v implies that v(s) → ∞ when s → ∞, and
therefore v is eventually increasing which implies that uΨ (t) → ∞ when
t → 1. Then, given M > 0, for all θ ∈ [0, 2π] there is rθ ∈ [0, 1) such that
uΨ (r) ≥ M, for all r ≥ rθ. Let r (M) be the maximum of rθ that satisfies
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this condition, then uΨ (r) ≥ M, for all r ≥ r (M) and for all θ ∈ [0, 2π] .
It follows that uΨ (z) → ∞ when |z| → 1. So uΨ has a minimum in D and
therefore a critical point there. �
Corollary 1. Let Ψ ∈ Nh. Then there is an absolute constant M > 0 such
that ∣∣∣∣∂ log λ∂z

(z)

∣∣∣∣ ≤ M

1− |z|2
,

for all z ∈ D.

Proof. Suppose first that Ψ (D) is bounded. By Lemma 2, there is a critical
point z0 ∈ D of the function uΨ defined in (16). With φ(w) = z0−w

1−z̄0w
we

have that g = Ψ ◦φ ∈ Nh. Therefore, since φ ∈ Aut(D), we obtain from (4)
that ug = uΨ ◦ φ, and consequently ug has a critical point at zero. From
here and the equality

∂wug
ug

(w) =
1

2

{
w̄

1− |w|2
− ∂w log λg(w)

}
,

it follows that λg has a critical point at zero. We conclude that g ∈ Nh0
and thus, by the inequality (15)

(19)

∣∣∣∣∂ log λg∂w
(w)

∣∣∣∣ ≤ |w|
1− |w|2

, w ∈ D.

On the other hand, as φ = φ−1,Ψ = g◦φ and hence λΨ(z) = λg(φ(z))|φ′(z)|.
Thus

∂z log λΨ(z) = (∂w log λg(φ(z)))φ
′(z) +

1

2

φ′′

φ′ (z).

From definition of φ and (19), we obtain that

|∂z log λΨ(z)| ≤
|φ(z)|

1− |φ(z)|2
|φ′(z)|+

∣∣∣∣ z̄0
1− z̄0z

∣∣∣∣ ≤ 3

1− |z|2
.

This proves the bounded case. The unbounded case follows by applying the
above argument to Ψr(z) =

1
rΨ(rz), z ∈ D and letting r → 1−. �

Corollary 2. If Ψ ∈ Nhµ0 , 0 < µ ≤ 1, then for all ξ ∈ T and 0 < r < 1,

1

2µ
λ(rξ) ≤ λ(ρξ) ≤ 2µλ(rξ),

r ≤ ρ ≤ 1+r
2 .

Proof. Given ξ ∈ T and 0 < r < ρ < 1,

log
λ(ρξ)

λ(rξ)
=

∫ ρ

r

∂

∂s
log λ(sξ)ds =

∫ ρ

r
2Re {∂z log λ(sξ)ξ} ds.

From Lemma 1 we have that∣∣∣∣log λ(ρξ)λ(rξ)

∣∣∣∣ ≤ ∫ ρ

r

2µs

1− s2
ds ≤ µ log 2

if r ≤ ρ ≤ 1+r
2 , and the corollary follows. �
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Remark 2. Under the same hypothesis of Corollary 2, we have that

1

M
λ(rξ) ≤ λ(ρξ) ≤Mλ(rξ)

if 0 < r ≤ ρ < 1 satisfy 1− r2 ≤M(1− ρ2), with M an absolute constant.

The following corollary is established in analogous form.

Corollary 3. Let Ψ ∈ Nh0 and k > 0. If z = reiθ and ζ = reiν with
0 < r < 1 and |θ − ν| ≤ k(1− r), then

e−2k λ(ζ) ≤ λ(z) ≤ e2k λ(ζ).

Remark 3. If Ψ is a holomorphic curve satisfying (6) with p(t) = (1−t2)−2,
then (see [4], Theorem 4)

(20) dΨ (z0) ≥
(1− |z0|2)λ (z0)

√
2 (1− |z0|) +

∣∣∣(1− |z0|2)(∂z log λ) (z0)− z0

∣∣∣ , z0 ∈ D,

where dΨ(z0) := d (Ψ(z0), ∂Ψ(D)). It follows from this and Corollary 1 that
C = 4 +

√
2 satisfies

(21) (1− |z0|2)λ(z0) ≤ C dΨ(z0), z0 ∈ D,

for all Ψ ∈ Nh.

5. Proof of the main theorems

We start with some preliminary lemmas found in [14].

Lemma 3. Let g be a real smooth function on (−1, 1) such that g′(t) > 0
for all t ∈ (−1, 1) , and g′′(0) = 0. Suppose that the Schwarzian derivative
of g satisfies

Sg(t) ≤ 2µ

(1− t2)2
, 0 ≤ µ < 1

on (−1, 1). Then there is M > 0 (depending only on µ) such that

(22)

∫ 1

r
g′ (t) dt ≤M

(
1− r2

)
g′(r), 0 ≤ r < 1

and

(23)

∫ r

−1
g′ (t) dt ≤M

(
1− r2

)
g′(r), −1 < r ≤ 0.

Lemma 4. Let a = reiθ ∈ D and S be the hyperbolic segment orthogonal
to diameter [−eiθ, eiθ] at a. Let eiθ1 and eiθ2 , θ1 < θ2 be the endpoints of S.
There is a constant K independent of r, such that for all w = r1e

iα ∈ S it
holds

(i) |θ2 − α| ≤ K(1− r1), if θ ≤ α;

(ii) |θ1 − α| ≤ K(1− r1), if α ≤ θ.
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Remark 4. With the notation before, we conclude from Lemma 4 and
Corollary 3 that there exists M > 0 such that if Ψ ∈ Nh0, then

(i) 1
M λ(r1e

iθ2) ≤ λ(w) ≤Mλ(r1e
iθ2), if θ ≤ α,

(ii) 1
M λ(r1e

iθ1) ≤ λ(w) ≤Mλ(r1e
iθ1), if θ ≥ α.

The proof of the following lemma is similar to the proof of Lemma6 in
[14], and is included here for the convenience of the reader.

Lemma 5. Let a and S be as in Lemma4 and σ the automorphism of the
unit disk that maps (−1, 1) onto S in such a way that σ(−1) = eiθ2 , σ(0) = a
and σ(1) = eiθ1 . Suppose that Ψ ∈ Nhµ0 , 0 < µ < 1 and λ1 = (λ ◦ σ) |σ′| . If
x is a critical point of the function

(24) v(t) =
1√

(1− t2)λ1(t)
, −1 < t < 1

and |x| > µ+ η, for some η > 0, then there is M > 0 such that

1

M
λ(y) ≤ λ(a) ≤Mλ(y),

where y = σ(x).

Proof. By a straightforward calculation one can see that σ(z) = −ieiθ ri+z
1−riz ,

v′(t)

v(t)
=

1

2

{
2t

1− t2
− λ′1(t)

λ1(t)

}
,

and
λ′1(t)

λ1(t)
=

⟨∇λ(σ(t)), σ′(t)⟩
λ(σ(t))

+ Re
σ′′(t)

σ′(t)
.

From this and the assumption v′(x) = 0 we obtain

2x

1− x2
=

⟨∇λ(σ(x)), σ′(x)⟩
λ(σ(x))

+ Re
σ′′(x)

σ′(x)
.

Hence, by (15) and Reσ
′′(x)

σ′(x) = − 2r2x
1+r2x2 , we deduce that

|x|
1− |x|2

≤ µ|σ(x)|
1− |σ(x)|2

|σ′(x)|+ r2|x|
1 + r2x2

≤ µ|σ(x)|
1− |x|2

+
1

1 + r2x2

≤ µ

1− |x|2
+

1

1 + r2x2
,

and so
|x| − µ

1− |x|2
≤ 1

1 + r2x2
.

We conclude from the condition |x| > µ+ η that

η

1− x2
<

1

1 + r2x2
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and therefore 1+r2x2

1−x2 < 1
η . Finally, the equalities

|σ′(x)|
1− |σ(x)|2

=
1

1− |x|2
and |σ′(x)| = 1− r2

1 + r2x2
,

imply

(25)
1− |a|2

1− |σ(x)|2
=

1 + r2x2

1− x2
≤ 1

η
.

The lemma now follows from Remarks 2 and 4. �
From Lemma5 and the inequality (25) we obtain the following result.

Corollary 4. Under the hypothesis of Lemma 5, there exist positive con-
stants C = C(µ, η) and δ = δ(µ, η) such that

δ ≤ (1− |y|2)λ(y)
(1− |a|2)λ(a)

≤ C,

where y = σ(x).

Proof of Theorem2. Step 1. Suppose Ψ is bounded. By Corollary 1 we
can assume that ∇λ (0) = 0. Let A,B ∈ Ψ(D) = Σ and a, b ∈ D such
that Ψ (a) = A and Ψ (b) = B. We consider the curve Γ = Ψ (S) , where
S := S(a, b) is the hyperbolic segment with endpoints a and b. We will prove
that given p ∈ Γ

min {l (Γ (p,A)) , l (Γ (p,B))} ≤Mµd (p, ∂Σ) .

Let q ∈ D such that Ψ (q) = p. Without loss of generality, we can assume
that if z0 = r0e

iθ0 is the midpoint of the hyperbolic geodesic γ passing
through a and b, then Arga > Argz0 and q ∈ S (z0, a). A parametrization
of S (q, a) is given by

φ(t) = −ieiθ0 r0i− t

1 + r0it
; t1 ≤ t ≤ t2, t1, t2 ∈ [0, 1) .

Hence, by Remark 3, there is a constant k such that

(26) l (Ψ (S (q, a))) ≤
∫ 1

t1

λ(φ(t))|φ′(t)|dt ≤ k

∫ 1

t1

λ(|φ(t)|eiθ)|φ′(t)|dt,

where θ > Arg{a} and eiθ is an endpoint of γ. Consider two cases: if
t1 ≥ 1/2, defining u = |φ(t)| we have that

uu′ = t
1 + r2

1 + r2t2
|φ′(t)| and t2 =

u2 − r2

1− r2u2
,

whence ∣∣φ′(t)
∣∣ = 1

t(1 + r2)

√
1 + r2t2

√
t2 + r2 u′ ≤ 4u′,

1/2 ≤ t1 ≤ t ≤ 1. Thus, by (26), Remark 2 and ( 21) we obtain

l (Ψ (S (q, a))) ≤ 4k

∫ 1

|φ(t1)|
λ(ueiθ)du ≤ C

(
1− |φ (t1)|2

)
λ (φ (t1)) ≤ M̃dΨ (q) ,
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where the constants depend only on µ. Now, if we suppose that 0 ≤ t1 < 1/2,
it follows from the above that

l (Ψ (S (q, a))) ≤
∫ 1/2

t1

λ(φ(t))
∣∣φ′(t)

∣∣ dt+ ∫ 1

1/2
λ(φ(t))

∣∣φ′(t)
∣∣ dt

≤
∫ 1/2

t1

λ(φ(t))
∣∣φ′(t)

∣∣ dt+ 4k

∫ 1

|φ(1/2)|
λ(ueiθ)du,

since |φ(t1)| ≤ |φ(1/2)| . On the other hand, for 0 ≤ t ≤ 1
2

1− |φ(t)|2 ≥ 1− |φ(1/2)|2 = 1−
r20 +

(
1
2

)2
1 +

(
r0
2

)2 ,
whence 1− |φ(t1)|2 ≤ 1− r20 ≤ 2(1− |φ(t)|2), 0 ≤ t ≤ 1

2 . We conclude from
here and Remark 2 that there is M ′ such that∫ 1/2

t1

λ(φ(t))
∣∣φ′(t)

∣∣ dt ≤M ′
∫ 1/2

t1

λ(|φ(t)|eiθ)
∣∣φ′(t)

∣∣ dt
≤M ′

∫ 1/2

t1

λ(|φ(t1)| eiθ)
∣∣φ′(t)

∣∣ dt.
Thus, from |φ′(t)| = 1−r20

1+r20t
2 ≤ 1 − r20 ≤ 2(1 − |φ(t1)|2), Remark 3 and ( 21)

it follows∫ 1/2

t1

λ(φ(t))
∣∣φ′(t)

∣∣ dt ≤ 2M ′ (1− |φ(t1)|2
)
λ(|φ(t1)|eiθ)

≤M ′′ (1− |φ(t1)|2
)
λ(φ(t1)) ≤ k′′dΨ (q) .

This proves the condition (ii) of Definition 1 in the bounded case. Note that
k′′ only depends on µ.

Step 2. We will show that there is M > 0 such that for all Ψ ∈ Nhµ

bounded and for all a, b ∈ ∂D

(27) l (Ψ (S)) ≤M ∥Ψ(a)−Ψ(b)∥ ,

where S is the hyperbolic segment with endpoints a and b. If there is no
such constantM , then for all n > 0, there is fn ∈ Nhµ bounded and ζ±n ∈ T
such that

(28) l (fn (Sn)) ≥ n
∥∥fn (ζ+n )

− fn
(
ζ−n

)∥∥ ,
here Sn is the hyperbolic segment with endpoints ζ+n and ζ−n . Without loss
of generality, we can assume that ∇λfn (0) = 0. Proceeding as in Step 1 one
can show that

l (fn (Sn)) ≤ C
(
1− |zn|2

)
λfn (zn) ,
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where zn is the midpoint of Sn and C only depends on µ. It follows from
here and the inequality (28) that

(29) lim
n→∞

∥fn (ζ+n )− fn (ζ
−
n )∥

(1− |zn|2)λfn(zn)
= 0.

Given n let σn ∈ Aut (D) be such that σn (±1) = ζ±n and σn (0) = zn. Note
that σn (z) = −ieiθn irn+z

1−irnz
if zn = rne

iθn , fn ◦ σn ∈ Nhµ, and λfn◦σn =

(λfn ◦ σn) |σ′n|. From Lemma 2, we can conclude that the functions

ufn◦σn(t) =
1√

(1− t2)λfn◦σn(t)
, 0 < t < 1

have an absolute minimum at some xn ∈ (−1, 1).
Now we consider the sequence of functions Fn = fn ◦ Rn, where Rn =

σn ◦Qn and Qn(z) =
xn−z
1−xnz

. It is easy to see that Fn ∈ Nhµ,

Fn(±1) = fn(ζ
±) and λFn = (λ ◦Rn)|R′

n|.

From the discussion above it follows that uFn(t) = (ufn◦σn ◦ Qn)(t) has a

critical point at t = 0 and hence
∂λFn
∂x (0) = 0. We conclude that

Ψn(z) =
Fn(z)− Fn(0)

(1− |yn|2)λfn(yn)
, yn = Tn (xn)

satisfies Ψn ∈ Nhµ, λΨn(0) = 1, ∂xλΨn(0) = 0 and by Corollary 1∣∣∣∣∂ log λΨn

∂z
(z)

∣∣∣∣ ≤ 3

1− |z|2
.

Integrating we obtain

(30)
(1− |z|)3

8
≤ λΨn (z) ≤

8

(1− |z|)3
; z ∈ D.

Since the components of Ψn are analytic in D, it follows from (30) that Ψn

has a subsequence Ψnk
, that we denote Ψn, which converges locally uniformly

in D to a holomorphic curve Ψ ∈ Nhµ. Note that if λ (z) = ∥Ψ′ (z) ∥, z ∈ D,
then λΨn → λ locally uniformly in D. Also, for all j = 1, 2, ...

∂jλΨn

∂xj
(t) → ∂jλ

∂xj
(t) ,

for all t ∈ (−1, 1) and accordingly S1Ψn (t) → S1Ψ(t). From (9) and the
inequality (see [4], Lemma 2)

S1Ψn(t) = Ssn (t) + λ2Ψn
(t)k2n(t) ≤

2µ

(1− t2)2
, −1 < t < 1,

we obtain

S1Ψ(t) ≤ 2µ

(1− t2)2
and Ssn (t) ≤

2µ

(1− t2)2
, −1 < t < 1,
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where sn (t) =

∫ t

0
λΨn (ν) dν and kn (t) is the curvature of Ψn (t) . Since

s′′n(0) = ∂xλΨn(0) = 0, we can argue as in the proof of Lemma 1 (see also
[14], Lemma 2), and conclude that

s′′n(t)

s′n(t)
≤ µ

2t

1− t2
, 0 ≤ t < 1

and therefore

(31) λΨn (t) = s′n (t) ≤
1

(1− t2)µ
, 0 ≤ t < 1.

By applying the results derived above to s̃n(t) = −sn(−t), −1 < t < 1, we
conclude that the inequality (31) also holds for −1 < t < 0, since s̃n and
sn have the same Schwarzian derivative and s̃ ′′

n(0) = s ′′(0) = 0. Then the
sequence Ψn is equicontinuous and bounded in [−1, 1], which implies that
Ψn converges to Ψ uniformly in [−1, 1]. In consequence

∥Ψn (−1)−Ψn (1)∥ → ∥Ψ(−1)−Ψ(1)∥ .
Now, by definition of Ψn,

∥Ψn (−1)−Ψn (1)∥ =
∥fn (ζ+n )− fn (ζ

−
n )∥

(1− |yn|2)λfn(yn)
(32)

=
∥fn (ζ+n )− fn (ζ

−
n )∥

(1− |zn|2)λfn(zn)

(
1− |zn|2

)
λfn(zn)

(1− |yn|2)λfn(yn)
.

From Corollary 4 it follows that there is a constant β > 0 such that(
1− |zn|2

)
λfn(zn)

(1− |yn|2)λfn(yn)
≤ β.

Then, from (29) and (32) we have ∥Ψn (−1)−Ψn (1)∥ → 0 and so Ψ (−1) =
Ψ (1) which is a contradiction since, from Theorem 1, Ψ is injective in D.
This proves (27).

Step 3. We prove that Ψ (D) is an uniform surface for Ψ ∈ Nhµ. Given
A,B ∈ Ψ(D) , A ̸= B, there are a, b ∈ D such that Ψ (a) = A and Ψ (b) = B.
We will show that Γ := Ψ (S (a, b)) satisfies (i) and (ii) of Definition 1. If
we compose with an automorphism of D we can assume that |a| = |b| =
ρ. The function Ψρ (z) = Ψ (ρz) satisfies Ψρ ∈ Nhµ, Ψρ (D) is bounded,
A = Ψρ (a/ρ) , B = Ψρ (b/ρ) , A,B ∈ ∂Ψρ (D) and Γ = Ψρ (S (a/ρ, b/ρ)) . It
follows from Step 2 that

l (Γ) = l (Ψρ (S (a/ρ, b/ρ))) ≤Mµ ∥Ψρ (a/ρ)−Ψρ (b/ρ)∥ =Mµ ∥A−B∥ ;
which prove (i). To show (ii) we take p ∈ Γ, there is q ∈ S (a, b) such that
Ψρ (q/ρ) = Ψ (q) = p. We conclude from Step 1 that

min {l (Γ (p,A)) , l (Γ (p,B))} ≤ kµdΨρ (q/ρ) = kµd (p, ∂Ψρ (D))
≤ kµd (p, ∂Ψ(D)) = kµdΨ (q) .

�
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Proof of Theorem3. By Lemma 2 in [4], the curve ϕ := Ψ|(−1,1) satisfies

S1ϕ(x) = Re {SΨ(x)}+ 3

4
λ2(x)|K(ϕ(x))|, −1 < x < 1.

The condition Ψ ∈ Nh implies

S1ϕ(x) ≤
2

(1− x2)2
, −1 < x < 1,

and hence by Theorem 2 in [5],

∥ϕ(x1)− ϕ(x2)∥
{∥ϕ′(x1)∥∥ϕ′(x2)∥}1/2

≥
√

(1− x21)(1− x22) dh(x1, x2), x1, x2 ∈ (−1, 1)

or equivalently,

∥Ψ(x1)−Ψ(x2)∥
{λ(x1)λ(x2)}1/2

≥
√

(1− x21)(1− x22) dh(x1, x2), x1, x2 ∈ (−1, 1).

In the general case, given z1, z2 ∈ D, there are T ∈ Aut(D) and points
x1, x2 ∈ (−1, 1) such that T (x1) = z1 and T (x2) = z2. Since Ψ ◦ T ∈ Nh,
then

∥Ψ(T (x1))−Ψ(T (x2))∥
{λΨ◦T (x1)λΨ◦T (x2)}1/2

≥
√

(1− x21)(1− x22) dh(x1, x2).

It follows from here and the equality λΨ◦T = (λ ◦ T ) |T ′| that
∥Ψ(z1)−Ψ(z2)∥
{λ(z1)λ(z2)}1/2

≥
√

(1− x21)|T ′(x1)|(1− x22)|T ′(x2)| dh(x1, x2)

and consequently

∥Ψ(z1)−Ψ(z2)∥
{λ(z1)λ(z2)}1/2

≥
√
(1− |z1|2)(1− |z2|2) dh(z1, z2),

which shows (7).
On the other hand, since Ψ ∈ Nhµ0 , we obtain from Lemma 1 that

(33) |∇ log λ(z)| = |2∂z log λ(z)| ≤ 2w(|z|),
where w is solution of the initial value problem

w′ (t) = w2 (t) +
µ

(1− t2)2
, w(0) = 0, 0 ≤ t < 1.

Now, given r ∈ (0, 1) and θ ∈ [0, 2π),

log
λ(reiθ)

λ(0)
=

∫ r

0

d

dt
log λ(teiθ)dt

=

∫ r

0

⟨
∇ log λ(teiθ), eiθ

⟩
dt

and therefore, by (33), ∣∣∣∣log λ(reiθ)λ(0)

∣∣∣∣ ≤ ∫ r

0
2w(t)dt.
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Since µ ∈ (0, 1) we have that

w(t) =
t

1− t2
− α2

1− t2
Aµ(t),

where

Aµ(z) =
1

α

(1 + z)α − (1− z)α

(1 + z)α + (1− z)α
; α =

√
1− µ .

It follows that∣∣∣∣log λ(reiθ)λ(0)

∣∣∣∣ ≤ ∫ r

0

2t

1− t2
dt−

∫ r

0

2α

1− t2
(1 + t)α − (1− t)α

(1 + t)α + (1− t)α
dt

= log
1

1− r2
−

∫ r

0

2α

1− t2

1−
(
1−t
1+t

)α

1 +
(
1−t
1+t

)αdt.

The substitution u =
(
1−t
1+t

)α
leads to∣∣∣∣log λ(reiθ)λ(0)

∣∣∣∣ ≤ log
1

1− r2
+

∫ u(r)

1

1

u

1− u

1 + u
du = log

1

1− r2
+

∫ u(r)

1

(
1

u
− 2

1 + u

)
du,

therefore ∣∣∣∣log λ(reiθ)λ(0)

∣∣∣∣ ≤ log

[
4

1− r2
u(r)

(1 + u(r))2

]
= log

[
4
(1− r)α−1(1 + r)α−1

((1 + r)α + (1− r)α)2

]
and thus we conclude that

λ(reiθ) ≤ λ(0)
41−α

(1− r)1−α
.

We obtain (8) by following the argument found in [12] (see also [8]). �

We may also obtain an inequality type (8) assuming Ψ ∈ Nh and Ψ
bounded.
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Willy Sierra, Departamento de Matemáticas, Universidad del Cauca, Popayán-
Colombia


